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1. Introduction

Recently, a large number of insulating oxides with resistance
switching effect have attracted extensive interest, ranging from
simple binary oxides of rutile, fluorite and related structures (e.g.,
TiO2 (Yang et al., 2008), CeO2 (Fors et al., 2005)), to the complex
three-, four- and five-component perovskites and related struc-
tures (e.g., SrTiO3 (Szot et al., 2006), Cr-doped SrTiO3 (Beck et al.,
2000) and Pr1�xCaxMnO3 (Liu et al., 2000)). Devices based on these
oxides are very promising for next generation memories due to
their non-volatile, high density, fast and small power-consuming
properties. For the realization of practical application, it is
important to understand and control the coupled electronic and
ionic phenomena that dominate the switching behavior of
nanoscale oxide devices.

Several models have been proposed to explain the resistance
switching effect, including Mott transition (Fors et al., 2005; Oka
and Nagaosa, 2005), Schottky barrier behavior at the interface
(Sawa et al., 2004; Fujii et al., 2005), charge trapping or detrapping
(Rozenberg et al., 2004), polaron melting and ordering (Jooss et al.,

2007), electric field-induced generation of crystalline defects (Tsui
et al., 2006; Hamaguchi et al., 2006), creation or destruction of
‘conducting filament’ (Szot et al., 2006) and oxygen vacancy
diffusion (Baikalov et al., 2003; Nian et al., 2007; Janousch et al.,
2007; Quintero et al., 2007). Because oxygen vacancieswidely exist
in metal oxides, oxygen migration model could be one of the
important understandings for the origin of the resistance switch-
ing effect, although the direct experimental evidences are still
needed. According to this model, the oxygen vacancies (ions) are
the active agents for resistance switching effect. The mobility of
oxygen vacancies is enhanced and thereby their pileup near metal
electrodes is caused under the applied electric field during a
switching operation. Thus, a local change of concentration of
oxygen vacancies near the electrodes results in changing the
resistance. The low resistance state (LRS) can be imagined as a
conductive path between the two electrodes that turn on the
devices. The high resistance state (HRS) may be described as the
destruction of this conductive path as the devices are turned off.
However, the observation of microscopic dynamic process of the
oxygen vacancy migration at atomic level is absent. One solution
for probing and analyzing the oxygen diffusion for resistance
switching effect is to measure the local transport property and
monitor the structural evolutions simultaneously by in situ

transmission electron microscopy (TEM) method. Such an ap-
proach is significant but rarely be reported (Jooss et al., 2007). For
many oxides with mixed valence cations (for example, transition-
metal oxides and rare-earth metal oxides), the oxygen vacancies
are mobile, while the cations sublattices are stable. It is believed
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induced by electric field was in situ imaged inside high-resolution transmission electron microscope,
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that the generation and the destruction of the conducting path are
associated with the oxygen migration.

Here, we report on a direct evidence for oxygen migration
mechanism for electrically induced resistance change effect in Au/
CeO2/Nb-STO (Nb doped SrTiO3) heterostructures by using in situ

TEM method. We have directly observed the dynamic process of
resistance switching operation accompanying with oxygen migra-
tion in the cerium oxides at atomic level. Based on these
observations, it is found that the formation of path of neighboring
oxygen vacancies could be the origin of the resistance switching
effect in cerium oxides. Our results may also be extended to other
oxide systems that have mixed valence cations.

2. Experiments

Experimentally, epitaxial CeO2 films are grown by pulsed-laser
deposition (PLD) on Nb-STO (1 0 0) substrates (0.7% Nb doped
SrTiO3), with different thicknesses ranging from 20 to 200 nm. The
growth direction of CeO2 film is [1 0 0] (data not shown here). We
first fabricated Au electrodes on top of the CeO2 film to form
the sandwiched structures using a standard photolithographic
technique and magnetron sputtering. Typical I–V characteristics
of Au/CeO2/Nb-STO device are shown in Fig. 1. The loops,
0! + Vmax ! 0!�V0

max ! 0, were demonstrated and they have
high degree of repeatability. Positive voltages are corresponding to
positive biases applied on the gold electrode, while the bottom
electrode (metallic Nb-STOhas good electric conductivity, as shown
in inset of Fig. 1) was grounded. To show the resistance switching
effect, theappliedvoltageswereswept fromaHRS (curve1)until the
decrease of the resistance after a positive bias threshold (�+1.5 V).
This means the conducting path was generated between the
electrodes. The device would stay at the LRS even bias decrease
(curve 2 and curve 3) until the negative threshold voltage (��4 V) is
overcome, whereby the conducting path was broken down and the
resistance increases notably, then the device went back to the HRS
(curve 4). If the sweeping voltage is less than the threshold voltage,
there is no creation or destruction of the conducting path. The
reversible I–V characteristics have been shown for the following
sweeping cycles. Now, the remaining question is the structural and
chemical properties of the conducting path.

To explore the microscopic dynamic process for the resistance
switching effect, we first made sample Au/CeO2/Nb-STO junction
for in situ TEM measurements. The electron transparent cross-
section samples were prepared by conventional mechanical
polishing and argon ion milling to a thickness of around 30–
60 nm. Then a bias voltage was applied across the sandwiched

junction inside a TEM (JOEL 2010F microscope with vacuum
2 � 10�5 Pa at room temperature) as illustrated in Fig. 2a. A sharp
gold tip driven by piezo-controller moved forward to contact the
CeO2 film of TEM-ready cross-section sample which loaded on a
home-made specimen holder. For electrical measurements, the
TEM electron beam was blanked out. The loop of in situ I–V sweep
also displayed the resistance switching effect, as shown in Fig. 2b.

3. Results and discussion

3.1. Structure

Fig. 3a and b show the high-resolution TEM image and the
electron diffraction pattern detected along the h1 1 0i axis before
applying electric field, and Fig. 3c displays the solid sphere model.
By applying a bias of 1 V to the junction for a few seconds [the
device is still at the HRS], both the TEM image and the diffraction
pattern remained unchanged. Then we applied a bias of 5 V to
make sure the device was at LRS (electric field E � 7.5 � 107 V/m),
as shown in Fig. 3d, the structural transition took place with the
appearance of wavy structures in the high-resolution TEM image.
The extra diffraction spots were also observed (Fig. 3e). These
superlattice reflections indicate that oxygen anions had been
removed from the ceria film and the introduced oxygen vacancies
were ordered as Ce2O3 by the applied electric field (Wang and
Kang, 1998; Sharma et al., 2004; Crozier et al., 2008). The structure
model for the process of forming ordered oxygen vacancies is
represented in Fig. 3f, where the rectangle shows the unit cell of
sesqui-oxide of the cerium oxide in the h1 1 0i orientation resulted
by ordered oxygen vacancies.

Fig. 2. (a) Scheme of in situ TEM measurement setup. The cross-section TEM-ready

sample, CeO2/Nb-STO junction, was contacted by a gold tip at a selected position by

piezo-controller, measuring the resistance and monitoring the structural evolution

simultaneously. (b) A loop of in situ I–V sweep reveals the resistance switching

effect. The inset: TEM image of metal-tip/CeO2/Nb-STO structure.

Fig. 1. I–V characteristics of single crystalline (1 0 0) CeO2 device with Nb-STO (0.7%

Nb doped SrTiO3) bottom electrode and Au top electrode. The upper inset:

schematic drawing of the junction with electrode geometry in which Au is taken to

be positive. The thickness of CeO2 film is about 40 nm. The dimension of the Au

electrode is 100mm � 100mm, 30 nm thick and with a 600mm separation in two

directions. The lower inset: themeasurement of the resistance of Nb-STO substrate,

which shows good electric conductivity (�50V).
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3.2. EELS

Because oxygen vacancy migration is accompanied with the
valence change in oxides, to gain further evidence of the oxygen
vacancy diffusion process, we have performed electron energy loss
spectroscopy (EELS) experiments on the samples to show the
change of chemical valence of the Ce ions. When applying a bias of
5 V, a reversal in the intensity of Ce M45-white lines was observed
[Fig. 4a and b], suggesting that Ce has undergone a transition from
4+ to 3+ oxide state (Garvie and Buseck, 1999). The disappearance
of the shoulder (indicated by arrowhead in Fig. 4a) suggests that
the strong covalence hybridization between Ce 4f and O 2p states
was vanished under the applied electric field. In fact, the influence
of TEM electron beam irradiation can be ruled out in this study.We
found that significant change in the white-line ratio occur by dose
more than 1.8 � 106 electron/Å2 from a sample with about 35 nm
thickness at the edge region, and in our in situ TEM experiments,
we kept the electron dose lower than 3 � 105 electron/Å2, which
should ensure that our measured changes in Ce oxidation state
under the electric field are not caused by electron irradiation.

3.3. Mechanism

The cerium oxide is facile to create anion deficiency because the
oxygen anions of fluorite structure are very active, and can move
though the lattice relatively easily (Trovarelli, 1996). In the
presence of electric field (positive bias on the Au electrode), the
oxygen anions (O�2) will move toward the anode where they have
taken electron and evolve oxygen gas. Concurrently, the oxygen
vacancies will diffuse into the crystal interior, and then assembled
near the cathode to reduce CeO2 to Ce2O3. For stoichiometric CeO2,
which is an insulator with band gap 6 eV (Koelling et al., 1983), the
oxygen p band has two extra electrons provided by Ce atom and
there is a narrow empty Ce f band in the gap between the valence
and conducting bands, as shown in Fig. 5. When an oxygen atom is
leaving its lattice position, the two electrons may occupy the
lowest possible empty state that is the f band of nearest Ce atoms,
tuning Ce4+ to Ce3+ with electron hopping (Skorodumova et al.,
2002). It means that the oxygen migration process simultaneously
accompanies with the ionic and electron conductivity. The
presence of Ce3+ ions (or oxygen vacancies) enhances the local

Fig. 4. (a) EEL spectra of Ce-M edge at zero bias. (b) A reversal in the intensity of CeM45white lines was observed; and the shoulder indicated by arrow in (a) disappeared after

applying the electric field.

Fig. 3. (a) Atomic TEM image of ceria single crystal film alone h1 1 0i zone axes. (b) Corresponding electron diffraction pattern. (c) Solid sphere model of CeO2 in a perfect

fluorite structure. (d) When 5 V voltage (E � 7.5 � 107 V/m) was applied between the gold tip and Nb-STO, the superlattice reflections appeared. The gold tip was positive

electrode. (e) Extra diffraction spots appeared. (f) Solid sphere model showing the formation of oxygen vacancies. The rectangles indicate the vacancy superlattices.
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electron conductivity of the cerium oxide (band gap of Ce2O3 is
about 2.4 eV (Prokofiev et al., 1996)). In the electric field, if the
domain of Ce3+ ions bridged the two electrodes, conductive paths
will be formed and the device will be switched from HRS to LRS.

In the caseof a sufficientnegative voltageon theAuelectrode, the
oxygen anions are driven to move toward the interface of CeO2/Nb-
STO(anode).Asweknow, theCeO2 layer is blanket filmandepitaxial
growthontheSTO, so theoxygenanionswill beblockedby interface,
and cannot be released as easily as at the surface (at the metal
electrode). The cerium oxide film near the interface would likely
form the stoichiometric dioxide (CeO2) and turn off the conducting
path, andhence thehighresistancestate (HRS).At the sametime, the
vacancies migrate to the surface (at metal electrode). Oxygen gas
will infuse into themetal/CeO2 interface layerdue to that thedensity
of the vacancies near the surface region is higher than the
equilibrium concentration. Fig. 6 shows the vacancies could be
recovered and the wave sweeping disappeared when �7 V bias
applied to the gold tip. It is worthy to point out that the residual
oxygen in the chamber of theTEM isenough to recover the vacancies
evenunder thevacuumofapproximately10�5 Pa (BevanandKordis,
1964).

Moreover, the communication between oxygen anions and gas
oxygen is also found in a number of other oxides (Waser and Aono,
2007). For instance, Szot et al. (2006) discovered that gas bubbles
had developed under the anodewhen the electric fieldwas applied
to single crystalline SrTiO3. Frommeasuring the fatigue behavior of
Ag/La0.7Ca0.3MnO3/Pt heterostructures, Shang et al. (2007) pro-
posed that oxygen gas could infuse into the electrode/film
interface and oxygen anions could diffuse out to the environment
when different bias was applied. Yoshida et al. (2008) demon-
strated that the gas oxygen could penetrate into the non-
stoichiometric nickel oxide film using 18O tracer gas atmosphere.
More recently, Yang et al. (2009) also found bubbles had formed
along the edge of the bottom electrode in TiO2 devices. For fluorite
structure, oxygen is also easily migrated in cerium oxide driven by

the electric field (Bevan and Kordis, 1964; Trovarelli, 1996), which
was directly imaged in situ TEM in this study.

4. Conclusion

In summary, we have studied the role of oxygen vacancy
migration for the electrically induced resistance effect in Au/
CeO2/Nb-STO junctions by using in situ TEM method. For the first
time, the dynamic process of resistance switching accompanying
with the oxygen migration has been directly imaged at atomic
level. Our in situ TEM studies unambiguously demonstrate that
the migration of the oxygen vacancies is responsible for the
resistance switching effect in cerium oxides. This mechanism
might provide new insight on the physical and chemical nature of
resistance switching effect for the oxide systems which have the
properties of creating anion deficiency, such as fluorite oxides,
rutile and perovskite oxides.
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